59 research outputs found

    RobustCLEVR: A Benchmark and Framework for Evaluating Robustness in Object-centric Learning

    Full text link
    Object-centric representation learning offers the potential to overcome limitations of image-level representations by explicitly parsing image scenes into their constituent components. While image-level representations typically lack robustness to natural image corruptions, the robustness of object-centric methods remains largely untested. To address this gap, we present the RobustCLEVR benchmark dataset and evaluation framework. Our framework takes a novel approach to evaluating robustness by enabling the specification of causal dependencies in the image generation process grounded in expert knowledge and capable of producing a wide range of image corruptions unattainable in existing robustness evaluations. Using our framework, we define several causal models of the image corruption process which explicitly encode assumptions about the causal relationships and distributions of each corruption type. We generate dataset variants for each causal model on which we evaluate state-of-the-art object-centric methods. Overall, we find that object-centric methods are not inherently robust to image corruptions. Our causal evaluation approach exposes model sensitivities not observed using conventional evaluation processes, yielding greater insight into robustness differences across algorithms. Lastly, while conventional robustness evaluations view corruptions as out-of-distribution, we use our causal framework to show that even training on in-distribution image corruptions does not guarantee increased model robustness. This work provides a step towards more concrete and substantiated understanding of model performance and deterioration under complex corruption processes of the real-world

    A Systematic Review of Robustness in Deep Learning for Computer Vision: Mind the gap?

    Full text link
    Deep neural networks for computer vision are deployed in increasingly safety-critical and socially-impactful applications, motivating the need to close the gap in model performance under varied, naturally occurring imaging conditions. Robustness, ambiguously used in multiple contexts including adversarial machine learning, refers here to preserving model performance under naturally-induced image corruptions or alterations. We perform a systematic review to identify, analyze, and summarize current definitions and progress towards non-adversarial robustness in deep learning for computer vision. We find this area of research has received disproportionately less attention relative to adversarial machine learning, yet a significant robustness gap exists that manifests in performance degradation similar in magnitude to adversarial conditions. Toward developing a more transparent definition of robustness, we provide a conceptual framework based on a structural causal model of the data generating process and interpret non-adversarial robustness as pertaining to a model's behavior on corrupted images corresponding to low-probability samples from the unaltered data distribution. We identify key architecture-, data augmentation-, and optimization tactics for improving neural network robustness. This robustness perspective reveals that common practices in the literature correspond to causal concepts. We offer perspectives on how future research may mind this evident and significant non-adversarial robustness gap
    • …
    corecore